On Strong Multiplicity One for Automorphic Representations
نویسنده
چکیده
We extend the strong multiplicity one theorem of Jacquet, Piatetski-Shapiro and Shalika. Let π be a unitary, cuspidal, automorphic representation of GLn(AK). Let S be a set of finite places of K, such that the sum ∑ v∈S Nv −2/(n+1) is convergent. Then π is uniquely determined by the collection of the local components {πv | v 6∈ S, v finite} of π. Combining this theorem with base change, it is possible to consider sets S of positive density, having appropriate splitting behavior with respect to a solvable extension L of K, and where π is determined upto twisting by a character of the Galois group of L over K.
منابع مشابه
REFINEMENT OF STRONG MULTIPLICITY ONE FOR AUTOMORPHIC REPRESENTATIONS OF GL(n)
We state a qualitative form of strong multiplicity one for GL1. We derive refinements of strong multiplicity one for automorphic representations arising from Eisenstein series associated to a Borel subgroup on GL(n), and for the cuspidal representations on GL(n) induced from idele class characters of cyclic extensions of prime degree. These results are in accordance with a conjecture of D. Rama...
متن کاملIrreducibility Criteria for Local and Global Representations
It is proved that certain types of modular cusp forms generate irreducible automorphic representations of the underlying algebraic group. Analogous Archimedean and non-Archimedean local statements are also given. Introduction One of the motivations for this paper was to show that full level cuspidal Siegel eigenforms generate irreducible, automorphic representations of the adelic symplectic sim...
متن کامل1 5 N ov 2 00 6 The Analytic Strong Multiplicity One Theorem for
Let π = ⊗πv and π ′ = ⊗π ′ v be two irreducible, automorphic, cuspidal representations of GLm (AK). Using the logarithmic zero-free region of Rankin-Selberg L-function, Moreno established the analytic strong multi-plicity one theorem if at least one of them is self-contragredient, i.e. π and π ′ will be equal if they have finitely many same local components πv, π ′ v , for which the norm of pla...
متن کاملDistinguished Representations for Sl ( 2 )
Let E/F be a quadratic extension of p-adic fields. We compute the multiplicity of the space of SL2(F )-invariant linear forms on a representation of SL2(E). This multiplicity varies inside an L-packet similar in spirit to the multiplicity formula for automorphic representations due to Labesse and Langlands.
متن کاملTwo-dimensional representations in the arithmetic of modular curves
In the theory of automorphic representations of a reductive algebraic group G over a number field K, it is broadly — but not always — true that irreducible representations occurring in L(GA/GK) occur with multiplicity one. In a classical special case (G = GL(2), K = Q, and where we restrict attention to automorphic representations which are holomorphic, cuspidal, and of weight 2), the Galois-th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008